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Protein-DNA Binding Residues Prediction Using
a Deep Learning Model with Hierarchical

Feature Extraction
Shixuan Guan, Quan Zou, Hongjie Wu∗, and Yijie Ding∗

Abstract—Biologically important effects occur when proteins bind to other substances, of which binding to DNA is a crucial one.
Therefore, accurate identification of protein-DNA binding residues is important for further understanding of the protein-DNA interaction
mechanism. Although wet-lab methods can accurately obtain the location of bound residues, it requires significant human, financial
and time costs. There is thus an urgent need to develop efficient computational-based methods. Most current state-of-the-art methods
are two-step approaches: the first step uses a sliding window technique to extract residue features; the second step uses each residue
as an input to the model for prediction. This has a negative impact on the efficiency of prediction and ease of use. In this study, we
propose a sequence-to-sequence (seq2seq) model that can input the entire protein sequence of variable length and use two modules,
Transformer Encoder Block and Feature Extracting Block, for hierarchical feature extraction, where Transformer Encoder Block is used
to extract global features, and then Feature Extracting Block is used to extract local features to further improve the recognition
capability of the model. The comparison results on two benchmark datasets, namely PDNA-543 and PDNA-41, prove the effectiveness
of our method in identifying protein-DNA binding residues. The code is available at
https://github.com/ShixuanGG/DNA-protein binding residues.

Index Terms—Protein-DNA Binding Residues, Deep Learning, Transformer-Based Models, Hierarchical Feature Extraction.
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1 INTRODUCTION

PROTEIN is a very important substance in our body that
can be combined with many other substances, such as

other biological macromolecules (DNA, RNA, nucleotides,
etc.) or metal ions (Mn2+, Zn2+, Fe3+, Ca2+, Na1+, etc.),
to perform specific life activities [1], [2], [3]. The binding of
proteins to DNA and thus making them interact with each
other is one of the most important of these. The binding of
proteins to DNA controls many DNA-related life activities,
such as DNA shearing, DNA replication, and transcriptional
regulation, etc [4]. Also, studying protein-DNA binding
residues can help us further understand the mechanism of
protein-DNA interactions [5].

Given the importance of protein-DNA binding, many
wet-lab methods have emerged to recognize protein-DNA
binding residues. Common wet-lab methods include: X-
ray crystallography [6], Fast ChIP [7] and electrophoretic
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mobility shift assays (EMSAs) [8], [9]. Although accurate
identification results can be obtained using these wet-lab
methods, it also has some problems, such as it is costly
and labor intensive, and it does not meet the growth rate
of protein sequences in the post-genomic era [10]. Accord-
ingly, it is necessary to develop an efficient and convenient
computation-based method for the identification of protein-
DNA binding residues. With the development of computer
theory, a number of computational methods have emerged
to identify protein-DNA binding residues. In general, we
can divide these computational methods into three cate-
gories: sequence-based methods, structure-based methods
and hybrid methods [11].

Sequence-based methods are the focus and the difficulty
of research in the field of bioinformatics. Because there is
less information contained in protein sequences, this leads
to the disadvantage that using only sequence-based features
to predict protein-DNA binding residues may have poor
performance. However, the number of protein sequences is
increasing day by day, and therefore, using only sequence
features is the focus of research in this area. In the last
decade or so, many sequence-based methods have been
proposed, which contain: BindN [12], ProteDNA [13], DP-
Bind [14], BindN+ [15], MetaDBSite [16], TargetDNA [17],
DNABind [18], DNAPred [19] and PredDBR [20], among
others. In BindN, they used three types of features extracted
from protein sequences, namely hydrophobicity, side chain
pKa value and molecular mass of an amino acid, and
fed them into a support vector machine (SVM) to predict
protein-DNA binding residues. In DP-Bind, they used evo-
lutionary information extracted from protein sequences, i.e.,
position-specific scoring matrix (PSSM) [21], and combined
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three traditional machine learning methods, i.e., penalized
logistic regression, SVM, and kernel logistic regression, to
improve the recognition performance of protein-DNA bind-
ing residues. In TargerDNA, they used two protein sequence
features, solvent accessibility and evolutionary information,
and made use of an under-sampling technique to divide
the raw data into multiple sub-datasets and applied mul-
tiple SVMs for ensemble learning to predict protein-DNA
binding residues. In DNAPred, they proposed an under-
sampling technique based on hyperplane distance for the
data imbalance problem, after which one SVM was trained
on each sub-dataset to perform prediction.

The structure-based methods use natural or predicted
3D structure information of proteins. This is because the 3D
structure of a protein contains a large amount of information
and the structure of a protein determines the function of the
protein to some extent. Therefore, using protein structure
information to predict protein-DNA binding residues often
achieves better performance than sequence-based method-
s. Common structure-based methods include: DBD-Hunter
[22], DNABINDPROT [23], DR bind [24], PreDs [25], etc. All
these methods mentioned above use only the structure infor-
mation of the protein and ignore the information that may
be contained in the protein sequence that may be helpful
in predicting the protein-DNA binding residues. Therefore,
hybrid methods combine protein sequence information and
structure information to further improve prediction perfor-
mance. Common hybrid methods include: TargetATP [26],
COACH [27], TargetS [28], SVMPred [29] and NsitePred
[30], etc. In PreDs, they generated the electrostatic potential,
global and local curvature of the protein surface to pre-
dict protein-DNA binding residues from the 3D structure
of the input protein. In DR bind, the model automatical-
ly predicted protein-DNA binding residues by describing
the protein structure using evolutionary, geometric, and
electrostatic properties. In DNABINDPROT, they predicted
protein-DNA binding residues based on a Gaussian network
model of the energy localization centers in the structure. In
COACH, they designed an algorithm named TM-SITE to
infer binding sites from homologous structural templates
and also an algorithm named S-SITE for sequence profile
alignment based on evolutionary information, after which
the results of both algorithms were combined using a SVM
to predict protein-DNA binding residues.

With the success of deep learning in the fields of com-
puter vision and natural language processing, there is now
a large body of work that applies deep learning to the
field of bioinformatics, such as transcription factor binding
sites prediction [31], Bacteriocins Identification [32], and
Drug-Drug Interaction Prediction [33]. In this work, we
propose a new computational and sequence-based approach
to predict protein-DNA binding residues efficiently and
conveniently. Most of the previous work used a sliding
window technique to pre-extract features for each residue.
The input magnitude is one residue rather than the whole
protein sequence at a time. Inspired by the work DeepC-
SeqSite [34], we propose an encoder-decoder model that
enables the prediction of the entire protein sequence. We
perform experiments on PDNA-543 and PDNA-41 datasets
and compare with other existing methods, and comparison
results demonstrate that our method can obtain competitive

or even better prediction performance than other state-of-
the-art methods. The highlights of our work are: (1) An
encoder-decoder model capable of handling the entire pro-
tein sequence is proposed to enable end-to-end protein-
DNA binding residue prediction. (2) Hierarchical protein
residue feature extraction structure is proposed to extract
not only global residue interrelationships, but also local
residue interrelationships.

2 METHOD AND MATERIALS

2.1 Data set

In this study, we used PDNA-543 as a training set and
PDNA-41 as an independent test set to validate the perfor-
mance of our model. The PDNA-543 and PDNA-41 datasets
were constructed by Hu et al. [17]. Hu et al. first collected
7186 DNA-binding proteins with clear annotations in the
Protein Data Bank (PDB), and then used CD-hit software[35]
to remove redundant sequences so that the identity of the
remaining protein sequences was less than 30%, resulting in
584 sequences that met the requirements. After that, the 584
protein sequences were divided into two parts, the training
set and the test set, containing 543 protein sequences and 41
protein sequences, respectively, i.e., the PDNA-543 dataset
and the PDNA-41 dataset. The two datasets do not overlap
and do not contain redundant sequences. On PDNA-543
we used ten-fold cross-validation to find the optimal model
hyperparameters and compared the performance with other
predictors. After that, we used the optimal hyperparameters
found to train our model on the PDNA-543 and performed
independent test on PDNA-41 to verify the generalization
of our model.

The details of PDNA-543 and PDNA-41 are shown in Ta-
ble 1. The PDNA-543 dataset contains 543 protein sequences
that can bind to DNA, with only a few residues that can bind
to DNA. And the identity of any two protein sequences
in the PDNA-543 dataset is less than 30%. The PDNA-41
dataset is consistent with PDNA-543, except that there are
41 protein sequences in it.

TABLE 1: Details of the PDNA-543 and PDNA-41
datasets.

Dataset No. Sequences1 No. positive2,
No. negative3 RDNABR

4(%)

PDNA-543 543 (9549, 134995) 7.07
PDNA-41 41 (734, 14021) 5.24
1No. Sequences: number of protein sequences.
2No. positive: number of DNA binding residues.
3No. negative: number of non-DNA binding residues.
4RDNABR: ratio of DNA binding residues.

2.2 Feature represention

As we all know, features of the input data determine the
final performance of the model to a large extent. In this
work, we used two kinds of features to represent each
residue in the protein, namely the Position Specific Scoring
Matrix (PSSM) and the predicted secondary structure (PSS).
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2.2.1 PSSM
The PSSM contains the evolutionary information of the
query protein. Previous related studies have demonstrated
the positive impact of PSSM for many bioinformatic tasks
[36], [37], [38]. In this study, we also utilize the PSSM to
represent each residue. The PSSM features were generated
using the multiple sequence alignment tool PSI-BLAST to
search against Uniprot[39] database for three iterations and
the E-value threshold was set to 10−3. After that, a normal-
ization formula was used to scale the values in the PSSM
to the (0,1) interval in order to unify units with different
features. The normalized formula for the PSSM is:

y =
1

1 + e−x
(1)

where x is each raw score in PSSM and y is the normalized
score. Given a protein sequence of length L, the dimension
of the PSSM features is L ∗ 20.

2.2.2 Predicted Secondary Structure
There are three types of secondary structures of proteins,
namely: coiled, α-helix and β-fold. Common secondary
structure prediction tools, such as PSIPRED [5] and PSSpred
[40], generate features of dimension 3 for each residue, and
the range of each value is (0,1). In this work, we utilize the
PSIPRED tool to generate the predicted secondary structure
of the target protein. With this tool, given a protein sequence
of length L, the dimension of the predicted secondary struc-
ture features is L ∗ 3, and the three values represent the
probability that the residue belongs to each of the three
types of secondary structures, i.e., coiled, -helix and -fold,
respectively.

2.3 Model
Predicting Protein-DNA binding residues is a binary classi-
fication issue. However, it is different from the traditional
binary classification issue. Traditional binary classification
issues, such as the prediction of DNA-binding proteins, clas-
sify the entire protein sequence. In contrast, the prediction
of Protein-DNA binding residues classifies each residue in
a protein sequence. Therefore, traditional methods use the
sliding window technique to integrate features for each
residue so that the residue is fed into the model as a
sample and eventually classified for that residue. This kind
of approach splits a large problem into smaller sub-binary
classification problems.

In contrast, we propose an encoder-decoder model in-
spired by the seq2seq model [41], [42], which does not have
to perform task splitting. We can input one whole protein
sequence at a time, and the input protein lengths can be
different. The overall framework of the model is shown in
Figure 1.

2.3.1 Positional encoding
Transformer Encoder Block is included in the overall model
of this study. Unlike traditional convolutional neural net-
works (CNN) [43] and recurrent neural networks (RNN)
[44] that automatically include the positional features of the
input, Transformer [45] is a purely attention-based model,
which leads to a lack of positional information. Therefore,

the positional encoding can help the model to better retain
the features of the input information. In protein sequences,
the sequential order of residues is very important. Because
there are only 20 common residue types, while the overall
length of the protein varies from tens to thousands. Different
residue arrangements refer to different protein sequences.
The addition of positional coding enables better expression
of protein sequence features.

In this work, we use the same fixed position encoding
as Transformer, i.e., we use sine and cosine functions of
different frequencies to represent the position encoding, as
follows:

Epos (pos, 2i) = sin
( pos

100002i/dmodel

)
(2)

Epos(pos, 2i+ 1) = cos
( pos

100002i/dmodel

)
(3)

where pos denotes the position of the residue in the protein
sequence, i denotes the position in the residue feature di-
mension, and dmodel denotes the dimension of the residue
feature. In this way, it is able to obtain a representation of
the position of each residue in the protein sequence with the
same dimensionality as the residue features extracted. After
that, the two are summed to be able to represent the position
of the residues in the protein sequence.

2.3.2 Transformer Encoder Block
We use Transformer Encoder as part of our encoder. Trans-
former uses a network model based on a self-attention
mechanism and it learns better global information. In this
work, the protein sequence features, after positional encod-
ing, will enter the Transform Encoder Block. The structure
of Transform Encoder Block is shown in Figure 1. First,
Embedded Sequences will enter into Multi-Head Attention.
Self-Attention calculates the attention weight among all
other residues including itself for each residue in the protein
sequence. It is calculated as follows:

Attention (Q,K, V ) = softmax

(
QKT

√
dk

)
V (4)

where the query Q has dimension dQ, the keyword K has
the same dimension dK , and the value V has dimension dV
(usually dQ = dK = dV ). And Multi-Head Attention is the
projection of Q, K, V by h different linear transformations,
and finally the different attention results are stitched togeth-
er as follows:

MultiHead (Q,K, V ) = Concat ( head 1, . . . , head h)W
0

(5)

headi = Attention
(
QWQ

i ,KWK
i , V WV

i

)
(6)

where W is a spatial mapping function and has the same
dimension in this work.

After Multi-Head Attention, there is a residual connec-
tion that adds the input to the Multi-Head Attention output.
In addition to Multi-Head Attention, there is usually a Multi-
layer Perceptron (MLP) module in the Transformer Encoder
Block. The MLP module contains of two fully-connected
layers and a nonlinear activation function. In general, too
deep models will make the gradient disappear in training
or make it difficult to propagate to the shallow part of
the model during backpropagation, resulting in ineffective
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Fig. 1: Overall framework of the model.The model consists of a Positional Encoding, a hierarchical feature extraction part
and a decoder part. Firstly, the protein sequence is encoded by positional encoding to encode the sequence of residues.
After that, the proteins go through Transformer Encoder Block, Feature Merging and Feature Extracting Block for
hierarchical feature extraction to obtain a feature representation. Finally, the Decoder Block is used to predict whether
each residue can bind to DNA or not.

parameter updates. To solve this problem, so we add some
residual connections after the multi-headed attention mod-
ule and the MLP module.

2.3.3 Feature Extracting Block
The Feature Merging Block will integrate the features of each
residue that passes through the Transformer Encoder Block.
Also, after the Feature Merging Block, the dimensionality of
the sequence is processed so that it can be processed by the
convolution module. Specifically, the Feature Merging Block
is a 2D convolutional layer. As described in the previous
section, the Transformer Encoder Block is well able to extract
the global features of each residue with respect to other
residues. As for proteins, residues that are close in sequence
tend to have similar properties. Therefore, it is also very
important to learn the local features of residues. As we all
know, the convolution operation is a feature aggregation of
the input by sliding a convolution kernel over the feature
map. The local features of residues can be well extracted by
the convolution operation. Therefore, our Feature Extracting

Block uses convolutional neural network for better hierar-
chical learning. The structure of Feature Extracting Block is
shown in Figure 1.

The Feature Extracting Block is composed of 2
Layernorm-conv-GLU blocks. The main difference is that
the first Layernorm-conv-GLU block is followed by the
residual connection, while the second one is not. Assuming
that the feature dimension is L∗1∗C after the Feature Merg-
ing Block, the feature dimension becomes L ∗ 1 ∗ 2C after
the Layernorm-conv. After that, the feature dimension is the
same for the residual connection. Also, for the consistency of
the front and back Layernorm-conv-GLU blocks, we apply
the same GLU activation function in the second Layernorm-
conv-GLU block. After the two Layernorm-conv-GLU block-
s, the output of the encoder is obtained, which contains the
global information learned from the Transformer Encoder
Block and the local information learned from the CNN
Extracting Block. After that, it will go to the decoder to get
the final prediction result.
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2.3.4 Decoder
For the decoder, the most important thing is to generate a
result of the same length as the protein, which is used to
determine the type of each residue (whether it is a protein-
DNA binding residue or not). Here, a simple decoder based
on fully connected layers that operates on residue levels can
be used. Alternatively, a decoder based on multi-layer CNN
can be used, but the number of output channels of the last
convolutional layer is required to be 2, which is used to
discriminate the type of residues. The architecture of the two
types of decoders is shown in the Figure 2. In later sections,
we will compare the impact on model performance using
two different types of decoders. Algorithm 1 provides the
pseudo-code of our method.

Algorithm 1 Pytorch-like Pseudo code for the implementa-
tion of our method.

# pos - Positional Encoding;
# encoder1 - Transformer Encoder Block;
# conv - Feature Merging Block;
# encoder2 - Feature Extracting Block;
# decoder - decoder based on full connection layer or
CNN;

for sequence, labels in data loader: do
# load a whole protein sequence and labels

# adjust data dimensions and add positional encoding
sequence pos = pos(sequence.view(L,1,C))

#global feature extraction via Transformer Encoder
Block

feature global = encoder1(sequence pos)

#go through the Feature Merging Block for feature
integration and dimension adjustment to be able to be
processed further

feature = conv(feature global)

# global feature extraction via Feature Extracting Block
feature local = encoder2(feature)

# get predicted results by decoder
prediction = decoder(feature local)

# calculate the loss and back propagate to update the
model parameters

loss = CrossEntropyLoss (prediction, labels)
loss.backward()
optimizer.step()

end for

3 RESULTS
3.1 Evaluation measurements
In this work, we use four metrics to evaluate the effective-
ness of our model and its difference with other predictors,
namely Matthews correlation coefficient (MCC), Specificity
(SP), Sensitivity (SN), and Accuracy (ACC), which are calcu-
lated as follows:

MCC =
TP × TN − FP × FN

√
(TP + FN)(TP + FP )(TN + FN)(TN + FP )

(7)

SP =
TN

TN + FP
× 100 (8)

SN =
TP

TP + FN
× 100 (9)

ACC =
TP + TN

TP + TN + FN + FP
× 100 (10)

Where TP is the predicted correct DNA residue binding
site (positive sample), TN is the predicted correct non-DNA
residue binding site (negative sample), FP is the incorrectly
predicted non-DNA residue binding site (negative sample)
as DNA residue binding site (positive sample), and FN is
the incorrectly predicted DNA residue binding site (positive
sample) as non-DNA residue binding site (negative sample).
Larger values for all four of these metrics indicate better
performance of the model.

3.2 Exploration of Optimal Model
The choice of model hyperparameters has a significant
impact on the final prediction results. In this section, we
use ten-fold cross-validation on the PDNA-543 dataset to
compare the experimental results of different model hyper-
parameter choices.

3.2.1 Setting of hyperparameters based on experience
This is because a model has a large number of hyperparam-
eters and it takes from several hours to 1 day for one exper-
imental run. Therefore, we could not perform experimental
comparisons for all hyperparameters. We empirically set
some hyperparameter values, as shown in Table 2. And in
subsequent experiments, the same values were used for all
these hyperparameters. In particular, we set the Batch size
to 1 so that the model can handle longer protein sequences
without additional padding operations.

TABLE 2: Hyperparameter values
based on human experience.

Hyperparameter Values

Optimizer Adan
Loss function CrossEntropyLoss
Learning rate 0.00005
Batch size 1
Epoch 1000

3.2.2 Performance comparison of encoders with different
number of layers
In the encoder part of our model, Transformer Encoder
Blocks and Feature Extracting Blocks are used, which con-
tain several layers of the same structure to extract features.
However, using different combinations of layers, the final ex-
perimental structures produced are slightly different. There-
fore, we conducted comparative experiments for different
block depths to find the model hyperparameters that would
give the best results. Here, the depth T of Transformer
Encoder Block is taken in the range of [1,5] with a step
size of 1, and the depth N of Feature Extracting Block is
taken in the range of [2,10] with a step size of 2. The specific
experimental settings and results are shown in Table 3. The
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Layer2: fully connected layer
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Layer1: fully connected layer
Nodes=(128,64)

Activation function=ReLU

Layer1: fully connected layer
Nodes=(128,64)

Activation function=ReLU

Binding probability per 
residue

Layer1: Convolutional Layer
channels=(128,256)

kernels=(1,1), stride=1
Activation function=ReLU

Layer1: Convolutional Layer
channels=(128,256)

kernels=(1,1), stride=1
Activation function=ReLU

Layer2: Convolutional Layer
channels=(256,2)

kernels=(1,1), stride=1
Activation function=ReLU

Layer2: Convolutional Layer
channels=(256,2)

kernels=(1,1), stride=1
Activation function=ReLU

Dropout rate=0.3

Binding probability per 
residue

(b)  decoder based on fully 
connected layer(a)  decoder based on CNN

Fig. 2: The architecture of the two types of decoders.The features extracted from the encoder are passed through a
CNN-based or fully-connected layer-based decoder. The CNN-based decoder consists of convolutional layers with a
convolutional kernel size of 1× 1 and a ReLU activation function. The fully-connected layer-based decoder consists of
linear layers and a ReLU activation function. With the decoder, we are able to obtain the final prediction for each residue.

position encoding part is included in the setup of each
experiment and the CNN decoder is used for the decoding
part.

From Table 3 and Figure 3, we can see that the effect gets
progressively better as the number of layers in the Trans-
former Encoder Block(T) increases. But when the number of
layers in the Transformer Encoder Block reaches 3, the effect
improvement is less obvious. And when T = 5, the effect on
the model has reached saturation, that is, increasing T does
not make the performance any better. Also, the performance
of the model becomes better when the number of layers
in the Feature Extracting Block(N) increases. But when the
number of layers in the Feature Extracting Block(N) is
greater than 6, it has an inverse effect on the performance
of the model. Therefore, better experimental results are often
achieved when the sum of T and N is at a more intermediate
value. Here, we take T = 5, N = 6, when the model works
best (MCC = 0.3487, SP = 95.28%, SN = 46.48%, and
ACC = 93.02%).

Fig. 3: MCC comparison of encoders with different number
of layers.
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TABLE 3: Performance comparison of encoders with different number of layers.

The number of layers in the
Feature Extracting Block (N)

The number of layers in the
Transformer Encoder Block (T) MCC SP SN ACC

2

1 0.3362 95.23 44.16 92.79
2 0.3415 95.20 46.03 92.98
3 0.3421 94.97 47.83 92.96
4 0.3424 95.28 44.64 92.84
5 0.3425 94.96 48.07 92.98

4

1 0.3365 95.32 42.63 92.58
2 0.3407 95.22 45.41 92.94
3 0.3432 95.33 44.01 92.75
4 0.3448 95.32 44.38 92.80
5 0.3450 95.19 47.50 93.11

6

1 0.3375 95.30 43.38 92.67
2 0.3414 95.32 44.00 92.70
3 0.3460 95.30 45.21 92.86
4 0.3487 95.25 43.70 92.46
5 0.3487 95.28 46.48 93.02

8

1 0.3357 94.92 47.43 92.93
2 0.3398 95.23 45.08 92.00
3 0.3440 95.30 44.67 92.79
4 0.3443 95.23 46.21 92.97
5 0.3440 95.27 45.17 92.86

10

1 0.3345 95.23 43.95 92.78
2 0.3365 95.22 44.58 92.83
3 0.3397 95.18 46.10 92.99
4 0.3408 95.25 44.86 92.84
5 0.3408 95.16 47.03 93.06

3.2.3 Performance comparison with and without positional
coding
As previously described, the position of residues in a protein
sequence is very important. This is because different combi-
nations of residue arrangements represent different protein
sequences. In this section, we explore the effect of the pres-
ence or absence of positional coding on the experimental
results. The experimental comparison results are shown in
Table 4. From Table 4, we can see that the effect of the model
with positional coding improves in MCC, SP, and SN com-
pared to the effect of the model without positional coding
by 1.67%, 0.07%, and 0.39%, respectively, which indicates
the effectiveness of positional coding to some extent. It is
also evident from another aspect that although positional
coding is helpful, our model still performs better without
their presence.

TABLE 4: Performance comparison with and without
positional coding.

With or without positional coding MCC SP SN ACC

with 0.3487 95.28 46.48 93.02
without 0.3430 95.21 46.30 93.02

Here, we set T = 5 , N = 6 , and the decoder uses CNN decoder.

3.2.4 Performance comparison of different decoder types
After the protein features are extracted by the encoder, the
extracted features are fed into the decoder to get the final
prediction results. In this section, we explore the effects of
different types of decoders on the experimental results. Here
we compare and analyze the experimental results of using
fully connected layer and using convolutional network as
decoder. The experimental results are shown in Table 5.
From Table 5, we can see that the MCC, SP, SN and ACC

values reach 0.3522,95.38%, 45.20% and 92.83% respectively
when using fully connected layer as the decoder. Compared
with using the convolutional layer as the decoder, the MCC
and SP values increase significantly, while the SN and ACC
values decrease slightly. Therefore, we can see that the two
types of decoders have their respective strengths. Since the
use of fully connected layer is simple, we uniformly use
fully connected layer as the decoder of the model in the
later experiments.

TABLE 5: Performance comparison of different
decoder types.

Decoder Type MCC SP SN ACC

Fully-connected layer 0.3522 95.38 45.20 92.83
CNN 0.3487 95.28 46.48 93.02

Here, we set T = 5 , N = 6 , and with positional
encoding.

3.2.5 Performance comparison of decoders with different
number of layers

After selecting the decoder type, in this section, we explore
the effect of different decoder layers on the model perfor-
mance. We selected one, two or three fully connected layers
as decoders and performed a five-fold cross-validation on
the PDNA-543 dataset. In Table 6, we compare the exper-
imental results for different decoder layers. From Table 6,
we can see that the model achieves optimal performance
on MCC and SP with 0.3522 and 95.38% respectively when
two-layer decoder is selected. Therefore, in this work, we
use two fully connected layers as hyperparameters for the
final decoder selection.
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TABLE 6: Performance comparison of
decoders with different number of layers.

Decoder Layers MCC SP SN ACC

One-layer 0.3471 95.21 47.41 93.07
Two-layer 0.3522 95.38 45.20 92.83
Three-layer 0.3149 85.78 41.46 83.61

Here, we set T = 5 , N = 6 , and with positional
encoding.

3.3 Performance comparison with other predictors
To more accurately evaluate the predictive performance of
our proposed classifier and its robustness, we compare it
with other existing methods by performing ten-fold cross-
validation and independent tests on the PDNA-543 and
PDNA-41 datasets, respectively.

3.3.1 Ten-fold cross-validation performance comparison on
the PDNA-543 dataset
We perform a ten-fold cross-validation on the PDNA-543
dataset and take the average of each time on the validation
set as the final prediction performance result. Table 7 shows
our comparison with other existing method TargetDNA[17].

Due to the limitation of the model, we could not will
adjust the threshold value of the classification significantly.
With the default threshold, i.e., threshold = 0.5, we can
reach 0.3522,95.38%, 45.20%, and 92.83% for MCC, SP, SN,
and ACC, respectively, in a ten-fold cross-validation on
PDNA-543 dataset. In comparison with TargetDNA, when
its threshold is set to SN ≈ SP , its MCC, SP, SN, and ACC
are 0.304, 77.05%, 76.98%, and 77.04%, respectively. Since
the two methods use different classification thresholds, we
only compare their MCCs. it can be found that the MCC of
our method (0.3522) is 15.9% higher than that of TargetDNA
(0.3040). And with the threshold setting of SP ≈ 95%, the
MCC, SP, SN and ACC of TargetDNA were 0.3390,95.00%,
40.60% and 91.40%, respectively. It can be clearly seen that
our method outperforms TargetDNA in MCC, SN and ACC
by 3.9%, 11.3% and 1.6%, respectively.

TABLE 7: Performance comparison of different
classifiers on PDNA-543 dataset via ten-fold

cross-validation.

Method MCC SP SN ACC

TargerDNA (SN ≈ SP ) 0.304 77.05 76.98 77.04
TargetDNA (SP ≈ 95%) 0.339 95.00 40.60 91.40
Our method 0.352 95.38 45.20 92.83

3.3.2 Independent test performance comparison on the
PDNA-41 dataset
We performed independent tests on PDNA-41 to val-
idate the robustness of our method. Table 8 shows
how we compare with other existing methods containing
ProteDNA[13], MataDBSite[16], BindN[12], COACH[27],
DP-Bind[14], DNABind[18], BindN+[15], TargerDNA[17]
and PredDBR[20]. From Table 8, we can clearly see that
our method obtained satisfactory experimental results com-
pared to the previous method. Specifically, the MCC, SP, SN
and ACC values reached 0.357,96.44%, 47.57% and 94.87%,

respectively. Compared to COACH, our method achieved
better experimental results for all evaluation metrics includ-
ing MCC, SP, SN, and ACC when tested independently on
the PDNA-41 data set. Among them, MCC, SP, SN, and ACC
improved by 1.4%, 1.4%, 3.0%, and 2.4%, respectively. In ad-
dition, our method outperforms other methods that adjust
thresholds. For example, the MCC values of BindN+ and
TargerDNA are inferior to our method, regardless of how
they adjust the threshold. For the state-of-the-art method
PredDBR, it achieves 0.359, 96.79%, 39.10%, and 93.93% for
MCC, SP, SN, and ACC, respectively. Although PredDBR
has higher MCC value (0.359) and SP (96.79%), it only
improves 0.56% and 0.36%, respectively, compared with our
method, which is not much different from the performance
of our model. However, the performance of our model is
improved by 21.7% and 1.0% on SN and ACC, respectively.

TABLE 8: Performance comparison of different
classifiers on PDNA-41 dataset via independent test.

Method MCC SP SN ACC

ProteDNA 0.160 99.84 4.77 95.11
MataDBSite 0.221 93.35 34.20 90.41
BindN 0.143 80.90 45.64 79.15
COACH 0.352 95.10 46.19 92.67
DP-Bind 0.241 82.43 61.72 81.40
DNABind 0.264 80.28 70.16 79.78
BindN+ (SP ≈ 95%) 0.178 95.11 24.11 91.58
BindN+ (SP ≈ 85%) 0.213 85.41 50.81 83.69
TargerDNA (SN ≈ SP ) 0.269 85.79 60.22 84.52
TargerDNA (SP ≈ 95%) 0.300 93.27 45.50 90.89
PredDBR 0.359 96.79 39.10 93.93
Our method 0.357 96.44 47.57 94.87

4 CONCLUSION

In this study, we propose an encoder-decoder model to
predict protein-DNA binding sites. To represent a protein
sequence, we use two sequence-based features, the evolu-
tionary feature PSSM and the predicted secondary structure,
respectively. The main advantage of our approach is the hier-
archical feature extraction of residues in protein sequences,
both global and local feature representation learning. Unlike
current state-of-the-art methods, our model enables end-to-
end prediction of an entire protein sequence without the
need for feature pre-extraction for each residue using a
sliding window technique, which demonstrates the ease
of use of our model. Comparing with previous methods,
our model achieves respectable performance on the PDNA-
41 test set (MCC:0.357, SP:96.44%, SN:47.57%, ACC:94.87%),
which proves the effectiveness of our model.

While our method has made some progress and can
handle variable length protein sequences, it also limits our
model to one protein input at a time. Therefore, we will
further try more models for the problem of inconsistent
protein sequence lengths. Given the success of graph neural
networks in bioinformatics [46], we will try to employ graph
structures to represent protein sequences to identify DNA
binding residues. In addition, the features used in this work
could be improved. With the great achievements in the field
of protein structure prediction in recent years, we can use
the predicted structural information to aid in this task.
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AVAILABILITY OF DATA AND MATERIAL

The datasets, codes and corresponding results are available
at https://github.com/ShixuanGG/DNA-protein
binding residues.

REFERENCES

[1] C. M. Dobson et al., “Chemical space and biology,” Nature, vol. 432,
no. 7019, pp. 824–828, 2004.

[2] M. Gao and J. Skolnick, “The distribution of ligand-binding pock-
ets around protein-protein interfaces suggests a general mecha-
nism for pocket formation,” Proceedings of the National Academy of
Sciences, vol. 109, no. 10, pp. 3784–3789, 2012.

[3] J. Zhao, Y. Cao, and L. Zhang, “Exploring the computational
methods for protein-ligand binding site prediction,” Computational
and structural biotechnology journal, vol. 18, pp. 417–426, 2020.

[4] Y. Ofran, V. Mysore, and B. Rost, “Prediction of dna-binding
residues from sequence,” Bioinformatics, vol. 23, no. 13, pp. i347–
i353, 2007.

[5] S. Jones, P. Van Heyningen, H. M. Berman, and J. M. Thornton,
“Protein-dna interactions: a structural analysis,” Journal of molecu-
lar biology, vol. 287, no. 5, pp. 877–896, 1999.

[6] M. Smyth and J. Martin, “x ray crystallography,” Molecular Pathol-
ogy, vol. 53, no. 1, p. 8, 2000.

[7] J. D. Nelson, O. Denisenko, and K. Bomsztyk, “Protocol for the fast
chromatin immunoprecipitation (chip) method,” Nature protocols,
vol. 1, no. 1, pp. 179–185, 2006.

[8] M. A. Heffler, R. D. Walters, and J. F. Kugel, “Using electrophoretic
mobility shift assays to measure equilibrium dissociation con-
stants: Gal4-p53 binding dna as a model system,” Biochemistry and
Molecular Biology Education, vol. 40, no. 6, pp. 383–387, 2012.

[9] L. M. Hellman and M. G. Fried, “Electrophoretic mobility shift as-
say (emsa) for detecting protein–nucleic acid interactions,” Nature
protocols, vol. 2, no. 8, pp. 1849–1861, 2007.

[10] S. Vajda and F. Guarnieri, “Characterization of protein-ligand
interaction sites using experimental and computational methods.”
Current opinion in drug discovery & development, vol. 9, no. 3, pp.
354–362, 2006.

[11] Y. Ding, C. Yang, J. Tang, and F. Guo, “Identification of protein-
nucleotide binding residues via graph regularized k-local hyper-
plane distance nearest neighbor model,” Applied Intelligence, pp.
1–15, 2021.

[12] L. Wang and S. J. Brown, “Bindn: a web-based tool for efficient
prediction of dna and rna binding sites in amino acid sequences,”
Nucleic acids research, vol. 34, no. suppl 2, pp. W243–W248, 2006.

[13] W.-Y. Chu, Y.-F. Huang, C.-C. Huang, Y.-S. Cheng, C.-K. Huang,
and Y.-J. Oyang, “Protedna: a sequence-based predictor of
sequence-specific dna-binding residues in transcription factors,”
Nucleic acids research, vol. 37, no. suppl 2, pp. W396–W401, 2009.

[14] S. Hwang, Z. Gou, and I. B. Kuznetsov, “Dp-bind: a web server for
sequence-based prediction of dna-binding residues in dna-binding
proteins,” Bioinformatics, vol. 23, no. 5, pp. 634–636, 2007.

[15] L. Wang, C. Huang, M. Q. Yang, and J. Y. Yang, “Bindn+ for
accurate prediction of dna and rna-binding residues from protein
sequence features,” BMC Systems Biology, vol. 4, no. 1, pp. 1–9,
2010.

[16] J. Si, Z. Zhang, B. Lin, M. Schroeder, and B. Huang, “Metadbsite:
a meta approach to improve protein dna-binding sites prediction,”
BMC systems biology, vol. 5, no. 1, pp. 1–7, 2011.

[17] J. Hu, Y. Li, M. Zhang, X. Yang, H.-B. Shen, and D.-J. Yu, “Pre-
dicting protein-dna binding residues by weightedly combining
sequence-based features and boosting multiple svms,” IEEE/ACM
transactions on computational biology and bioinformatics, vol. 14, no. 6,
pp. 1389–1398, 2016.

[18] R. Liu and J. Hu, “Dnabind: A hybrid algorithm for structure-
based prediction of dna-binding residues by combining ma-
chine learning-and template-based approaches,” Proteins: Struc-
ture, Function, and Bioinformatics, vol. 81, no. 11, pp. 1885–1899,
2013.

[19] Y.-H. Zhu, J. Hu, X.-N. Song, and D.-J. Yu, “Dnapred: accu-
rate identification of dna-binding sites from protein sequence by
ensembled hyperplane-distance-based support vector machines,”
Journal of chemical information and modeling, vol. 59, no. 6, pp. 3057–
3071, 2019.

[20] J. Hu, Y.-S. Bai, L.-L. Zheng, N.-X. Jia, D.-J. Yu, and G. Zhang,
“Protein-dna binding residue prediction via bagging strategy and
sequence-based cube-format feature,” IEEE/ACM transactions on
computational biology and bioinformatics, pp. 1–1, 2021.

[21] S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang,
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